Wednesday, December 26, 2012

Rationalizing Imaginary Denominators

When dealing with fractions with imaginary denominators, one must express this as a complex number in a+bi form.


For example:

17 - 3i
10 + 7i

1) Multiply by the conjugate of the denominator over itself (fraction equals 



17 - 3i   *   (10 - 7i)         
10 + 7i       (10 - 7i)



2)Foil. FOIL the top and FOIL the bottom.


170 - 119i - 30i + 21i²
100 -70i + 70i + 49i²



3)Multiply top by top, bottom by bottom.



170 - 149i + 21i²                 
    100 + 49i²                                

                                                                               
4)Combine the imaginary terms. They (i) 

cancels out in the denominator.


170 - 149i - 21
    100 + 49

5) Combine constant terms on top and bottom.


149 -149i
      149

6)Split apart into a+bi form.

149  -  149   i
149      149



1 - i


Finding the roots of a parabola.

To find the roots of a parabola is fairly easy. Its all about the formulas.

Questions can be asked like this.

Determine the roots of the equation x22x3=0.


*The trick is to see whether an equation is factorable or not.
x^2 - 2x - 3 = 0    Factorable.

(x - 3) (x + 1)      BAM!
Now find the roots.
x - 3 = 0    x + 1 = 0
x = 3        x = -1
The roots of the equation are 3 and -1.


XY


Now if you get an equation that isn`t factorable like this -x^2 + 4x -3 = 0

Use the quadratic formula.
     a = -1, b = 4, c = -3
-----------------------------------------

-4 + or - √ 4^2 - 4(-1)(-3)
_____________________
                                                                     2(-1)

                  
                                                           -4 + or - √ 16 -12
                                                                   _____________________      
                                                                                        -2

                                                            -4 + or - √ 4                       -4 + or - 2                               
                                                            _________                       __________
                                                                     -2                                       -2


-4 + 2                    or                   -4 - 2
 __________________________________________                                                                   
     -2                                                   -2



-2                                                         -6
__                                                      ____
-2                                                         -2



ROOTS are 1 and 3.  DONE!

Systems of equations :$

*Systems of equations is asked when there are two equations. One must use both to find a coordinate; x and y.
*This is called solving linear systems algebraically.


Solve the system of equations 2x - 3y = 23  +3y=23and -x- 6y= -4 
by combining the equations.

1) First eliminate x.

2x - 3y = 23   -x - 6y = -4

Use both 2 and -1, to eliminate x.

1(2x - 3y = 23)   2( -x - 6y = -4)    Distribute.

2x - 3y = 23
-2x - 12y = -8           2)Make sure to eliminate x, one is positive and one is negative.
____________
0x - 15y = 15
     _________
       -15    -15

y = -1                3) Now use y to find x. Plug in -1 to an easy equation.

2x - 3(-1) = 23
2x + 3 = 23
     -3      -3
__________               
2x = 20
______
    2
x = 10

(10,-1)

Done!


Sunday, December 16, 2012

Simplifying Expressions with Rational Exponents =}

Rational exponents can be turned into radicals.

x^1/2 = √x
x^1/3 = 3√x
x^1/4 = 4√x
Smiley

Examples:

1) 27^1/3 = 3√27 = 3√33 = 3

2) 12^1/2 * 3^1/2 = √12 * √3 = √36 = 6

3) 16^1/3 * 4^1/3 = 3√16  * 3√4 = 3√64 = 4                
Smiley
Remember Simplifying:

2² x² y² z²  =  2xyz

xx 4 = x7      

More Examples: 

1) (x^4 y ^6 z^8) ^1/2
x^4/2 y^6/2 z^8/2
x² y4

2) 4^3/2
(4^1/2)^3
(2)^3
 8

3) (4^3)^1/2

64^1/2
√64
8





Saturday, December 8, 2012

Factoring by Grouping =!

How do we factor by grouping? 

In order to factor by grouping, basic simplifying and factoring is needed.

Simplifying: clearing parentheses, combining like terms by adding coefficients then combining constants. Green Smilies

For example.

3(x+2) + 5(x+2)

First distribute to clear parentheses.

3x + 6 + 5x + 10

Next combine like terms by adding coefficients.

8x + 16

_____________________
Now do some Factoring.

x² - 5x -36

(x - 9)(x + 4)

Green Smilies

 Back to Simplifying: Now try grouping instead of combining like terms.

3(x + 2) + 5(x +2)

Now ask: What does this equation have in common with itself?

The answer is : (x+2)

So place 3 and 5 in parentheses as well.   

(3+5)(x+2) *Don`t foil.

Then you`ll get 8(x+2)     Smiley
______________________

Now for a problem involving Factoring by Grouping.

x+ 3x² - 4x - 12

  • Separate the equation 


x3+ 3x² |  -4x -12


  • Simplify each side


x² (x + 3) |  -4 (x +3)   


  • Trick is to have the (x + 3) on both sides. Ask: What do they have in common?
  • Then group.
(x²-4)(x+3)


  • Factor (x²-4) to get the perfect answer.
(x+2)(x-2)(x+3)      Smiley













Monday, December 3, 2012

Functional Notation *---*

Function Notation is just using a symbol such as f(x) =, as another way to represent y.
Simply all that is needed is for evaluating each function is substitution.

For example:



(the arrow is read "is mapped to")

(the vertical bar is read "such that")




So using an equation f(x) = x² + 7


Find f(3).

To find f(3) replace x with 3.

f(3) = (3)² + 7

The answer is 16.
Courtesy of http://www.regentsprep.org/Regents/math/algtrig/ATP5/EvaluatingFunctions.htm